FHRE

University of Oklahoma HSC

Modeling Risk Reduction Interventions for Patients with Type 2 Diabetes Mellitus

James W. Mold, MD, MPH for Dewey Scheid, MD, MPH Department of Family and Preventive Medicine

June 3, 2010

Value to the Customers (AHRQ, researchers, and clinicians)

Value: Documentation of complexity
Example: Standard quality indicators fail to account for complexity.
Value: Demonstration of benefit of Archimedes model
Example: Could be used at the point of care to guide decision-making.
Value: Demonstration of diminishing returns principle Example: Three interventions are nearly as good as eight if well-chosen.

Disclosure of Relevant Financial Relationships

I have the following financial relationships to disclose:

Grant/Research support from: AHRQ, NHLBI I have no other financial relationships to disclose.

Disclosure of Off-Label and/or investigative Uses

I will not discuss off label use and/or investigational use in my presentation.

Complex Patients Require Complex Treatment Decisions

Multiple Possible Adverse Outcomes
Which are most likely?
Which are most important?
Multiple possible interventions
Which should be recommended first, second, third?
Diminishing Returns
How many interventions are enough?

Patients with Type 2 Diabetes are Complex

Other health conditions are often present Hypertension
High LDL; low HDL; high triglycerides
Obesity and/or Inactivity
Macrovascular disease (CAD, PAD, CVD)
Microvascular disease (renal, eye)
Peripheral and/or autonomic neuropathy
CHF
Multiple guidelines often apply

Modeling Outcomes in Diabetes

Cardiff Diabetes Model (Discrete Events) UKPDS Outcomes Model (Discrete Events) UKPDS Risk Engine (Regression)
EAGLE (Monte Carlo)
CORE Diabetes Model (Monte Carlo)
Sheffield Diabetes Model (Progression Model)
CDC/RTI Type 2 Diabetes Progression Model
Archimedes (Object-Oriented Modeling)

Archimedes

How it works
Object oriented programming
Differential equations to represent biological information

Biochemistry, physiology, pathophysiology
Signs and symptoms
Treatment
Behaviors and logistics
Treatments
Outcomes
Costs

Diabetes PhD - a simplified version, is available on a public website through the American
Diabetes Association

PHD Validation

Subjected to a series of 74 validation exercises involving 18 clinical trials, 10 of which were not used in the construction of the engine
Correlation between results of PHD simulations and clinical trials overall was astounding ($r=0.99$)
Correlation between absolute differences in outcomes also amazing ($\mathrm{r}=0.97$)
Predicted lower effectiveness of aspirin in women, increased MI risk in older patients with A1cs <7\%

Outline of the Research

Create simulated patient prototypes with varying severities of hypertension, dyslipidemia, glucose control, etc.

Determine their predicted risk of specified outcomes at 10,20 and 30 years

Determine the size of risk reductions for different interventions, individually and in combination

Patient Prototypes

(Variables and their possible values)

Gender	Male, female
Age	$40,50,60,70,80$
Race, ethnicity	WNH, H, B, A, AI
BMI	$25,27,30,35$
Systolic BP / Diastolic BP	$130 / 80,140 / 90,160 / 100,180 / 110$
LDL	$70,100,130,160,190$
HDL	$30,40,50,60$
Triglycerides	$100,150,300,500$
HbA1c	$7,8,9,10,12$
Smoking	Current, Past, Never
Physical activity	Sedentary, Light, Moderate, Vigorous
Conditions, macrovascular	None, MI, CVA, Angina, CABG/Angioplasty/Stent, CHF
Conditions, eye	None, Retinopathy, Blindness from Diabetes, Laser
Conditions, renal	None, Proteinurea, Dialysis or Transplant
Conditions, extremities	None, Foot ulcers, Amputation

Interventions
(Possible interventions with possible levels of impact on intermediate outcomes)

Tobacco use cessation	Yes, no
Physical activity	Sedentary, light, mod., vigorous
Weight reduction	$25,27,30$
BP reduction	$130 / 80,140 / 90,160 / 100$
LDL reduction	$70,100,130,160$
ACEI/ARB	Yes, no
Beta blocker	Yes, no
Blood glucose control	Yes, no
Low dose aspirin	Yes, no
Annual foot exams	Yes, no
Annual eye exams	

Outcomes

Cumulative Risk over 10, 20, and 30 years of:
MI
Stroke
Renal failure
Retinopathy
Blindness
Foot ulcers
Amputation

Challenges

Variation in calculated risks with same inputs
Diabetes PHD applies the input values to a hypothetical 1,000 pt cohort and yields a mean
Some parts of the model are probabilistic
Estimates are problematic especially for low risk outcomes
Number of possible combinations
Basic prototypes - 69,120
Interventions - 109,276
Total - 7,553,157,120
It is only feasible to run each prototype once

Simulated patients for Demonstration

50 year-old white males with a four year history of Type 2 diabetes
Prototype variable values:
BP: 130/80, 180/110
LDL: 70, 190
HDL: 30, 60
Triglyceride: 100, 500
A1c: 7\%, 12\%
BMI: 25, 35
Smoker (16yo), non-smoker, former smoker (just quit)
Sedentary, vigorous exercise

Outcome Probabilities 50 y.o. WM with DM and many vs few other risk factors

Cummulative Risk

\square Worst
\square Best

Outcomes

Agency for Healthcare Research and Quality
Advancing Excellence in Health Care

20 Year Risk of Myocardial Infarction

20 Year Risk of Stroke

20 Year Risk of Renal Failure

20 Year Risk of Blindness

20 Year Risk of Amputation

Diminishing Returns

When there are many different ways to reduce the risk of a particular adverse event (e.g. MI), the absolute impact of each successive intervention will be reduced by the impact of prior interventions.

Absolute Risk Reduction = Risk X Relative Risk Reduction

Each intervention reduces risk, so ARR gets smaller if RRR is the same size or smaller.

Risk as a function of a sequence of risk reduction measures assuming independent effects

$\square-$ Arbitrary
\longrightarrow Best First
\longrightarrow Equal

Probability of MI at $\mathbf{1 0 , 2 0 , 3 0} \mathrm{yrs}$ by intervention

Probability of Stroke at 10, 20, 30 yrs by intervention

10-Yr MI ARRs: Comparison of Two Cases

Intervention	50yo WM inactive smoker SBP 160 LDL 130 A1c 9\% Baseline Risk 39.1\%	70yo BM inactive smoker SBP 160 LDL 130 A1c 9\% Baseline Risk 37.9\%
Smoking Cessation	19.1%	15.3%
Moderate Exercise	9.4%	16.3%
Aspirin	8.3%	11.5%
SBP to 129	5.1%	9.33%
LDL to 70	0.5%	5.5%
A1c to 7.5	0.2%	3.2%
Beta Blocker	0.7%	4.0%
ACE inhibitor	0.1%	3.7%

Questions?

