
 
 

   
 

  
 

  
  

 

 

 

  
 

  
 

    
 

    
 

   
    

      
 

 
 

  
  

Title Page

Title of Project: Meaningful Drug Interaction Alerts 

Principal Investigator: Daniel C Malone, PhD, FAMCP 

Other Team Members: 
Sheila Gephart, RN, PhD 
Vignesh Subbian, PhD  
Richard D. Boyce, PhD 
Philip Hansten, PharmD  
John Horn, PharmD 
Andrew Romero, PharmD  
Malinda Tan, PharmD 
Lorenzo Villa, PharmD,  PhD  
Ainhoa Gomez-Lumbreras, MD, PhD 

Organization: University of Utah. College of Pharmacy, Department of Pharmacotherapy 

Inclusive Dates of Project: 05/01/2018 - 02/28/2023 

Federal Project Officer: Roland Gamache 

Acknowledgment of Agency Support: The project described was supported by grant number 
R01HS25984 from the Agency for Healthcare Research and Quality (AHRQ). Thank you to 
AHRQ for their support. The contents of this report are solely the responsibility of the authors 
and do not represent the official views of AHRQ. 

Grant Award Number: R01 HS25984 



 
 

    

 

Structured Abstract

Purpose:  Drug-drug interactions (DDIs) are responsible for 5-14% of  adverse drug reactions  in  
hospitalized patients.  Individualizing DDI alerts  to specific patient circumstances will result in a 
much greater proportion of alerts  that physicians,  pharmacists, and other healthcare providers  
will be more likely  to heed.  
Scope:  To develop evidence to support,  design,  and implement novel alerting algorithms to  
reduce alert  fatigue associated with DDIs.  
Methods: Aim 1: To identify combinations that should be avoided, to identify drug and patient 
characteristics that would affect the likelihood of  harm due to a DDI.  Aim 2:  We constructed  
artifacts using Drools and JBoss  software to evaluate the ability  to provide warnings based on  
contextual factors.  Aim 3:  Artifacts were created to disseminate to healthcare organizations and  
being implemented.   
Results:  Aim1:  Numerous  studies were conducted that quantified the evidence for various drug 
combinations. For example, reporting odds  ratios (ROR)  of adverse consequences due to  
colchicine-related interactions ranged from  35.4 (95%  CI: 12.8-97.6)  for atazanavir and  
rhabdomyolysis/myopathy.   
Aim 2:  A  total of 8 DDIs  were identified as high priority  for contextual alerting. Both document-
based decision trees and computable knowledge artifacts for  these algorithms have been made  
available publicly at https://ddi-cds.org.  Use of the 8 algorithms would result in filtering 1584  
(52.4%) of these alerts.  
Aim 3:  Vanderbilt University  Medical Center implemented a colchicine  interaction app developed 
by the team.  We also developed a custom drug interaction editor prototype and sought  
feedback  from pharmacists and others about the  usability  of  the tool.  

Key Words: Drug Interactions; Cytochrome P-450 Enzyme System; Algorithms;  Decision  
Support Systems,  Clinical; Medical  Order Entry  Systems;   
  

https://ddi-cds.org


 
 

 

 

 
 

   
  

 
  

  
    

 
   

  
 

   
  

 
 

  
     

  
     

Purpose

Drug-drug interactions (DDIs) are preventable adverse events (AEs)  that are responsible for 5– 
14% of adverse drug reactions  (ADRs) in hospitalized patients, are a  major risk factor  for  
hospitalization, and occur in up to 13% of elderly  ambulatory patients. Exposure to life-
threatening DDIs continues to occur despite the widespread use of clinical  decision support  
systems (CDS).  Due to meaningful use requirements, most commercial drug knowledge-bases  
(KBs) and the electronic  health records (EHRs) systems  that utilize this knowledge have largely  
failed to implement  meaningful DDI CDS due to liability concerns.  Off-the-shelf systems  
generally use simple approach of  triggering alerts  based on the presence of potentially  
interacting drug  pairs in  a patient’s medication regimen.  The result is an overly sensitive trigger  
that more often than not  generates inappropriate alerts,  causing important alerts to be missed or  
ignored. The evolution of these systems  to a more useful  role in CDS has  been hindered by  the 
perceived risk of liability,  competing customer needs, and legacy  systems that cannot easily  
adapt to rapidly  evolving science.  The  central hypothesis  of  this project is that individualizing 
DDI alerts  to specific patient circumstances will result in a much greater proportion of alerts that  
physicians, pharmacists, and other healthcare providers will be more likely to heed. Therefore,  
to reduce excessive and  irrelevant  alerts, DDI alerts  must be filtered and prioritized by  
contextual factors  that increase or decrease the risk of a harmful interaction. The  goals  of this  
project were to: 1) use  new and existing evidence related to exposure to DDIs to inform clinical  
decision systems (CDS); 2) construct and validate alert algorithms  that incorporate relevant  
drug attributes  and patient characteristics; and 3) widely implement and evaluate alerting 
algorithms across  the continuum of  care. These broad goals were supported by  the following 
aims:  
Aim 1: Assemble evidence for individualized DDI  alerts and design DDI algorithms  that draw on  
the wealth of data within electronic health records (EHR);  
Aim 2: Validate the function of newly designed DDI algorithms using EHR data; and 
Aim 3: Conduct a real-time evaluation of DDI  algorithms in a variety of healthcare environments  
including ambulatory and institutional settings.  

Scope
The primary scope of activities of this grant are outlined below under each specific aim. 
Aim 1: Assemble evidence for individualized DDI alerts and design DDI algorithms that
draw on the wealth of data within electronic health records (EHRs) 
Problem: Evidence for most drug interactions is based on case reports and theoretical 
pharmacokinetic and pharmacodynamic considerations. The construction of CDS algorithms for 
DDIs to prevent over alerting are hindered by the lack of supporting evidence. This is especially 
true when determining laboratory values or dose limits that serve as triggers because these 
attributes are not studied or reported in the literature. Solution: We analyzed EHR and other 
healthcare data and other evidence from the literature to construct DDI alerting algorithms for 11 
interactions that are frequently occurring in healthcare systems and institutions. When 
implemented, these algorithms could reduce warnings when patient characteristics, drug 
attributes, and contextual factors are taken into consideration. 

Aim 2: Validate the function of newly designed DDI algorithms using EHR data 
Problem: An important but often overlooked component of algorithm development is the need to 
validate that the specified approach is fit for the intended purpose. The ideal DDI alert algorithm 
should provide clinically meaningful information to healthcare providers when a patient is at risk 
but would not interrupt the workflow when the medications are not likely to cause harm. 



  
   

  
   

 
  

 
     

  
  

 
  

    
  

   
 

   
 

 
 

  
  

   
 

   
 

   
     

   
  

   
 

  
 

     
  

   
   

    

Solution: We conduct a retrospective evaluation using both synthetic and de-identified data. To 
simulate implementation of the algorithms, and to test that the rules would run as expected, a 
synthetic patient population was created and loaded into the open-source common data model 
provided by the Observational Health Data Science and Informatics (OHDSI) collaborative. 

Aim 3: Conduct a real-time evaluation of DDI algorithms in a variety of healthcare
environments including ambulatory and institutional settings. 
Problem: Numerous studies document high rates of “overridden” DDI alerts and extensive 
dissatisfaction with alerts that are perceived as inappropriate, insignificant, disruptive, or 
unnecessary. Receiving fewer but more specific alerts might increase clinicians’ perceived 
benefits of DDI warnings. Healthcare organizations are keen on improving their systems to 
increase provider acceptance and satisfaction, as well as improving patient safety. Solution: We 
developed “apps” that can be implemented within EHRs to provide warnings and alternative 
approaches to address potential DDIs. After being reviewed by internal governance, information 
technology (IT) security, and various clinical teams, one of our apps was successfully 
implemented within a healthcare system. 

Methods  
Aim 1: Assemble evidence for individualized DDI alerts and design DDI algorithms that
draw on the wealth of data within electronic health records (EHRs) 

To identify combinations that should be avoided, the research team held multiple 
teleconferences involving experts in DDIs, obtained relevant publications associated with 
various interactions, and analyzed EHRs to identify drug and patient characteristics that would 
affect the likelihood of harm due to a DDI. 

Drug pair selection: As unlimited and unknown DDIs exist, we did not aim to conduct an 
extensive search of all potential DDIs. To identify those interactions where potential algorithms 
could be developed, we first queried alerts and overrides from an academic healthcare system 
to identify DDI alerts that fired from 2,000 to 6,000 times/month. We also held a series of 
webinars to discuss the algorithms (discussed in aim 3 below), and through those webinars we 
received requests from clinicians to examine two potential interactions involving: 1) 
dexamethasone and direct acting oral anticoagulants; and 2) tizanidine and ciprofloxacin. 

Evidence Generation: Among these DDIs, we identified a subset of interactions where there 
are modifying factors that may affect the risk of harm. For each DDI of interest, we conducted 
an extensive literature search to identify relevant studies and case reports. We also conducted 
analyses using the Food and Drug Administration’s Federal Adverse Event Reporting System 
(FAERs). Because FAERs contains only “numerator” information, we conducted 
disproportionality analyses and estimated the reporting odds ratio of adverse events reports of 
combinations as compared to reports without such combinations. Within FAERs, each report 
contains a classification on the role played in the AEs by each drug mentioned: primary suspect 
(PS), secondary suspect (SS), interacting (I) or concomitant  (C). All the reported AEs are  
mapped to MedDRA®  (Medical Dictionary  for Regulatory Activities) terminology. FAERS reports  
from 2004 quarter 1 through 2020 quarter 3 (dates of the FAERS data downloadable from the  
FDA's website) were downloaded from  the FDA  website and compiled for analysis using the 
process described by  Banda et al  (2016).  This process included mapping drug mentions to the  
RxNorm  terminology and collapsing duplicates  reports to the latest submitted version. To 
remove duplicates, we extracted the most  recent  case version from all available cases based on  
the case id, the case event date, age, sex,  reporter country, a concatenated alphabetic ordered  



   
 

 
  

  
 

  
       
    

  
   

  
 

    
 

 
    

 
  

   
 

     
     

  
      

        
  

  
 

 
   

list of drug names, and outcomes. We kept the most current case version and removed all 
others. 

We calculated disproportionality metrics for reports that each medication involved in a potential 
interaction and one or more of the suspected AEs. A contingency table was created for each 
combination to calculate the reporting odds ratio (ROR) and its corresponding 95% confidence 
interval (95% CI). RORs were calculated for those reports in which medication of interest was 
identify as having a PS, SS or I role and having any role (PS< SS< I and C). We defined a drug 
interaction safety signal as a ROR with a lower 95% CI above 2.0 and a minimum of 5 reports 
with the medications and AEs of interest. The disproportionality measure was also calculated for 
object drugs (medications affected by the interaction) having any role and each of the AEs 
without the requirement of a co-mentioned medication. 

We also conducted a series of studies to identify risk of harm associated with various drug 
combinations and patient-level factors that mitigate or increase risk of harm. Because the 
project was conducted during the COVID-19 pandemic, we capitalized on the creation of the 
National COVID Cohort Collaboration (N3C), a national repository of patients who may have 
been infected with COVID-19 as well as non-infected individuals to investigate a potential 
interaction with dexamethasone and direct acting oral anticoagulants (DOACs). We used a 
retrospective, observational, nested case control design to study patients with or without a 
thromboembolic event to assess their previous exposure to the combination of apixaban or 
rivaroxaban (>= 10 days) and dexamethasone (equal to or more than 5 days of treatment after a 
patient has been taking a DOAC for at least 5 days). For every thromboembolic case, 2 controls 
were sampled with no replacement. Cases were matched to controls on data partner identifier, 
COVID+ based on laboratory or diagnostic criteria within 30 days prior to the index date, age 
(within 5 years), sex, duration of apixaban or rivaroxaban exposure binned into 90-day spans, 
and presence/absence of a thromboembolic event within 30 days prior to cohort entry date. 
Because the  study treated  COVID-19 as a covariate and was used for  matching, the  study  
period preceded the start of the COVID-19 pandemic going from  Quarter 2 of 2018 to May 30th,  
2021. Data were excluded prior to the study period start due to sparsity of  data contribution prior  
to 2018.  All data transformation and data analyses were performed in the  N3C Enclave, which is  
a secure  cloud-based platform developed by Palantir Technologies and hosted by NIH National  
Center  for Advancing Translation Science (NCATS). The data in the N3C Enclave were  
contributed by over 40 participating data partners and include Electronic Health Records (EHR)  
of over 6.7 million patients who were tested for SARS-Co-V-2,  had related symptoms,  or had 
other similar diseases such as SARS 1,  MERS, or  H1N1.   
 
We also used the CERNER Health Facts®  (HF) database to investigate potential harm due to 
exposure to potential interactions. The  Health Facts® database captures  and stores de
identified, real-world, longitudinal EHR patient data, and contained data on almost 50 million 
patients, around 300 million encounters, and over  1.3 billion laboratory  results from  the 
participating medical institutes across the United  States. HF contains detailed patient  
information including demographics characteristics, medical  diagnoses based on the 
International Classification of Diseases,  Ninth Revision (ICD-9) and Tenth  Revision (ICD-10)  
codes, and other related  information like insurance status, location of service, laboratory  tests  
and information on medications. We examined this database for evidence  of harm associated  
with exposure to  the following DDIs: potassium sparing diuretics  and renin-angiotensin system  
(RAS) agents [this includes angiotensin-converting enzyme inhibitors (ACEI), or angiotensin 
receptor blockers (ARBs); QTc prolonging agents; and thiazide diuretics and selective serotonin 
reuptake inhibitors]. For each of these studies, we created cohorts of patients with exposure to 
both medications, each medication alone, and control medications. Adverse events of interest 
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included laboratory values (i.e., serum potassium, serum sodium), diagnoses, and 
electrocardiogram results. Again, due to the COVID-19 pandemic, we also used the HF data to 
investigate potential QTc prolongation associated with hydroxychloroquine and other 
medications known to prolong the QTc interval using methods like those described above. 

When the evidence regarding a particular interaction had not been summarized in previous 
systematic review, we conducted a review that included a meta-analysis to quantify the risk of 
harm. Such studies were conducted for interactions involving potassium sparing diuretics and 
angiotensin-converting enzyme inhibitors (ACEI) and angiotensin-receptor blockers (ARB) and 
the combination of warfarin with oral salicylates. For these studies, we conducted searches 
using PubMed and Embase, along with other databases such as Web of Science, Cochrane 
Collaboration, and Web of Science to identify relevant studies. For each study, we developed a 
project-specific protocol that specified inclusion and exclusion criteria. At least two individuals 
evaluated potential articles for inclusion. Data was extracted for each study and entered in a 
data file for analysis. We evaluated each included study for risk of bias. Summary effects were 
calculated to estimate the mean difference or odds ratio, depending on the outcome of interest. 
Analyses  with random effects  models were conducted, and heterogeneity  was assessed using 
both Cochran’s  Q and I2. We also examined funnel plots  for publication bias and conducted  
subgroup analyses  to explore various factors  that may have affected the results, such as study  
design, reported outcomes, and medications of interest, and dose of  medication.   

Algorithm Design
For each drug combination of interest, a decision table was then developed consisting of 
modifiable risk factors such as: unique drug product, route of administration, dose, patient 
characteristics, contextual characteristics, and laboratory test values. This was then used to 
draft and refine the decision framework for each algorithm. Members of the research team met 
weekly to discuss the algorithms, including evaluating the evidence and defining criteria for 
alerting. Once draft algorithms were created, they were shared with the project’s expert panel 
for review and comment. They were also shared with individuals from healthcare systems 
(hospital organizations), drug knowledgebase vendors, and other clinicians with expertise in 
DDIs. 

Aim 2: Validate the function of newly designed DDI algorithms using EHR data
The algorithms developed in Aim 1 were operationalized using common coding systems for 
medications, laboratory values, and diagnosis codes. The expert-developed decision trees were 
converted into knowledge artifacts using both JBoss Drools and HL7 Clinical Quality Language. 
The rules were coded to enable a software program to identify patients that met inclusion 
criteria for the algorithm. To test if an algorithm would perform as expected, we created a 
synthetic patient population based on the Observational Health Data Science and Informatics 
(OHDSI) collaborative and implemented the OMOP on FHIR system to serve the synthetic 
patient data in the HL7 FHIR standard. The common data model was selected because of its 
ability to accommodate different observational data structures. Concept sets for unique 
medications and classes of medications using RxNorm were created. LOINC were used for 
laboratory values, and both SNOMED-CT and ICD was used for clinical conditions. The final set 
of concept sets were published on the National Library of Medicine’s Value Set Authority 
Center. The value set authority is located at: https://vsac.nlm.nih.gov/. More details about the 
Value Set Authority can be found in the article: Bodenreider, Olivier, Duc Nguyen, Pishing 
Chiang, Philip Chuang, Maureen Madden, Rainer Winnenburg, Rob McClure, Steve Emrick, 
and Ivor D’Souza. “The NLM Value Set Authority Center.” Studies in Health Technology and 
Informatics 192 (2013): 1224. 

https://vsac.nlm.nih.gov/


 

  
     

 
  

  
   

 

    
         

    
     

     
    

          
          

         
            

 
   

  
 

  
 

 
     

  
 

 
   

  
   

 

Implementation guides were developed to communicate the specific details of DDI rule 
implementation,  the required terminology artifacts, and the testing and validation procedure. A  
sub-set of artifacts were submitted to  the  CDS Connect Repository and the ddi-cds.org website  
for dissemination. SMART on FHIR applications  were developed for three high-priority DDIs and  
deployed to the Logica SMART app gallery and the Logica CDS sandbox.   
We also evaluated the algorithms using data from a single healthcare academic medical center. 
Data were transformed into the OHDSI common data model. A Drools engine was used to 
execute the algorithms using this data. The results from the code were validated using SQL 
queries of the database (written independently). The research team manually validated the 
coding using simple drug exposure. Further analyses were conducted using output from the 
algorithms by analyzing various patient and drug attributes. 

In another study we  used the 15  high-priority  DDIs  identified  by  the  Office  of  the  National  
Coordinator  (ONC)  for  Health Information Technology to examine the extent  that contextual  
factors were available to  customize alerts. This DDI list has been generally adopted by drug  
interaction knowledge sources. Each DDI was evaluated using three different drug interaction 
references: Lexicomp®, Micromedex®, and Hansten and Horn’s Top 100  Drug Interactions©. 
We extracted the list of drugs in each interacting  group and variables  that  can affect  the risk or  
severity of the DDI. Variables were classified as either Order (i.e.,  timing, dose, and  route) or 
Patient (i.e.,  conditions, observations,  and  medications. Similar to the  ONC’s list,  the drug  
interaction references each provided drug groups. We measured the reliability of drugs in each  
group among the ONC’s list  and the three dr ug i nteraction references.  The group reliability  was  
calculated using Fleiss’  Kappa for  measuring nominal scale agreement among many  raters.  
We identified variables  that  would affect  the DDI  risk or severity.  These variables were placed  
in Order or Patient categories. Extracted Order variables were classified as  timing, dose, and  
route. Timing variables are relevant when time between the administration of two interacting 
drugs can modify the risk that a DDI will occur. Dose variables are relevant when the dose of 
either interacting drug affects the potential severity/seriousness of harm due to the DDI. Route of 
administration (e.g., transdermal, oral, intravenous, etc.) can be important when the route can 
modify the risk of a DDI, usually due to lack of systemic absorption of topical, ophthalmic, or 
otic agents. Extracted patient variables were classified as condition, observation, and 
medication. Condition variables include patient comorbidities and/or acute problems that may 
affect the severity of DDI. Observation variables are any relevant measurements (e.g., 
laboratory test results and vital signs) that modify the risk or severity of a DDI. Medication 
variables include other medications the patient is taking that may increase or decrease the 
severity or risk of a DDI, including multiple interactions associated with single product. We 
identified the number of drug interaction references that provided a similar narrative and report 
these results descriptively. 

Aim 3: Conduct a real-time evaluation of DDI algorithms in a variety of healthcare
environments including ambulatory and institutional settings. 

During the conduct of this project the COVID-19 pandemic swept the country making Aim 3 
more challenging to accomplish. Resources that may have been available for implementation of 
algorithms were consumed with managing the day-to-day operations at healthcare institutions. 
Thus, interest in participating in the study significantly declined. Furthermore, resources and 
personnel within the Cerner organization changed dramatically over the duration of the grant, 
including a key contact that was a leader within Cerner. Hence, we shifted our planned activities 
to address the barriers limiting widescale implementation of the algorithms. 

http://ddi-cds.org


   
  

   
  

    
  

 
 

   
   

  
     

 
  

 
   

   
   

 
  

 
    

    
 

  
  

 
   

    
 

 
  

 
   

   
  

    
  

   
  

    
  

 
 

   

 
 

  
   

To generate interest for using the algorithms across the healthcare community we held a series 
of webinars, each focused on a separate algorithm or issue. Each webinar was promoted to 
previous attendees as well as posted on listservs for the pharmacoinformatic group within the 
American Medical Informatics Association and the pharmacy informatics and technology special 
interest group of the American Society of Health-Systems Pharmacy. We also sent information 
about the webinars to directors of pharmacy informatics residency programs. Each webinar was 
recorded and a link to the webinar was posted on our group website (ddi-cds.org). 

After the pandemic situation started to stabilize, we started to reach out to various pharmacists 
and other persons with an interest in DDIs to identify possible sites to implement one or more of 
our algorithms. Via the webinars, we announced requests for information concerning 
modifications or implementations to DDI warning systems within participant’s organizations. 

To gain further insights on barriers to implement our DDI algorithms we conducted a series of 
interviews with pharmacy and medical informatics professionals. The purpose of this study was 
to examine how DDI clinical decision support systems (CDSS) are currently implemented and 
identify barriers and facilitative implementation strategies to foster implementation of third-party 
algorithmic DDI CDS support. Specifically, we sought to identify strategies and attributes 
needed to foster the algorithm adoption. A participant interview guide was framed based on the 
synthesis of the Learning Health System framework and informed by Proctor’s taxonomy of 
implementation outcomes and Socio-technical Systems Theory. Areas of interest included 
feasibility of implementing external CDS, measuring alert performance, organizational culture 
and support of CDS, technical issues with implementing CDS, and CDS governance. A series of 
structured interviews were conducted with pharmacy and medical informatics with responsibility 
for medication safety, including DDI. Participants of interest included pharmacists with informatic 
roles within a hospital, chief medical informatics officers, and associate medical informatics 
directors/officers and were identified based on attendance at webinars related to DDI CDS. 
Each interview was recorded, and a transcript was created for analysis. Data analysis followed 
three phases of grounded theory coding. 

We also developed a drug interaction customization editor (DICE), a prototype tool with an 
easy-to-use graphical interface to permit medication safety administrators to modify DDI 
warnings based on discrete coded data within the EHRs. These contextual attributes would be 
readily available in most EHR systems, and therefore DDI warnings could easily be customized 
by a medication safety committee or others responsible for such warnings. A team of 
pharmacists, physicians, and DDI experts identified attributes that were perceived to be useful 
for filtering DDI warnings. These attributes were then incorporated into DICE and grouped into 4 
sections (general, medication, patient, and visit sections). A survey was constructed to evaluate 
attributes of DICE and to determine whether there were important missing attributes. Invited 
participants were asked to view a video explaining the DICE tool (12 minutes) and then answer 
questions about the tool, along with basic demographic information (10 minutes). The survey 
had 41 questions over 4 the DICE sections (general, medication, patient, and visits). For each 
section of DICE, a screen shot was provided, and respondents were asked about the perceived 
usefulness of that particular attribute using a scale of 0 “Not Useful” to 100 “Very useful”, with a 
free response text question asking for additional comments at the end of each section. The 
general section contained 6 questions on DDI severity rating, DDI alert management, DDI 
documentation level, additional information, and interaction monograph. The medication section 
had a total of 6 questions about primary and secondary drug properties, route and frequency of 
administration, and ordering physician. The patient section included attributes such as age and 
weight. The laboratory section included attributes such as serum creatinine and other questions 
related to timing (e.g. 2 days, 1 week, last month, etc.). The visit section asked respondents to 

https://ddi-cds.org/


   
  

 
   

 
 

 
  

 
      

  
   

   
 

 

      
 

  
    

  
  

 
 

 
 

   
   

      
    

    
     

    
  

  
 

  
   

  

rate the usefulness of the ability to change warnings based on encounter location (e.g. adult 
emergency department, observation, adult intensive care unit, etc.) and encounter type (e.g. 
ambulatory, inpatient, etc.). The final section asked respondents to rate their overall impression 
of the DICE tool and, its usefulness and to identify any other attributes they think would be 
useful for filtering DDI alerts. Comment boxes were provided in each section to capture 
respondents’ opinions and thoughts. 

Finally, we developed an “app” for our colchicine and cytochrome P-450 3A4 (CYP3A4) 
enzyme/ p-glycoprotein (P-gp) enzyme inhibitor algorithm. This app involved creating concept 
sets of known inhibitors of these enzymes and evaluating documentation of a patient’s renal 
function using diagnosis information or laboratory data. The app is available via the DDI­
CDS.org website. To test implementation of the app we worked with Vanderbilt University. 
Details on the implementation are provided below in the results section. 

Limitations 
There are several limitations that  should be kept in mind when interpreting the  findings  from  the 
above referenced studies. Data reported in FAERS represents only  numerator data and  
determining the  true incidence of harm  from such voluntary  reporting databases is not possible 
because of  the lack of denominator data. Results  from the  CERNER  Health Facts®  database 
are largely based on inpatient stays and may not  reflect the risk in ambulatory non-
institutionalized settings.  The evaluation of algorithms using both synthetic data and data from a 
single healthcare institution may not identify all issues that could arise when using one of the  
designed  algorithms. Results  from our  structured interviews with pharmacists, CMIOs, and 
others responsible for  medication safety is limited to those institutions included in the sample,  
and findings from the study are not generalizable to other organizations. The apps based on the 
algorithms have not been rigorously evaluated in production environments. As mentioned 
above, there were significant changes in personnel with the Cerner EHR software provider, 
limiting our ability to implement many of the DDI algorithms. Finally, the COVID-19 pandemic 
severely affected our ability to engage organizations to implement one or more apps/algorithms 
to evaluate their effectiveness in practice environments. 

Results 

AIM 1: Below are findings associated with the development of DDI evidence and associated 
algorithms. To conduct and disseminate all the research conducted with the grant and to 
achieve our aims we created a website: https://ddi-cds.org/about-us/ where more specific 
information and details on the results of the grant can be viewed. Algorithms for the following 
DDI pairs were developed: ACEIs or ARBs / Potassium Sparing Diuretic; Colchicine CYP3A4 / 
P-gp inhibitors; COVID-19 Therapies; KCL and K Sparing Diuretics; selective serotonin 
reuptake inhibitors (SSRIs) and serotonin/norepinephrine reuptake inhibitors (SNRIs) / Thiazide­
diuretics; Tizanidine / CYP1A2 Inhibitors; Warfarin / Non-steroidal anti-inflammatory drugs 
(NSAIDs); Warfarin / Antidepressants; and Warfarin / Salicylate. Details for each algorithm are 
available at: https://ddi-cds.org/ddi-algorithms/ 

Studies generating evidence for DDIs: A series of investigations were conducted to provide 
evidence for the various DDI algorithms. As described above, studies were conducted using the 
FDA’s FAERs database,  the CERNER Health Facts®  (HF) database, and also the N3C  data.  
We also conducted systematic reviews and  meta-analyses. Summaries of  results from these  
studies are provided below.  

https://ddi-cds.org/about-us/
https://ddi-cds.org/ddi-algorithms/


FAERS 
− 

 

 

The disproportionality analysis for tizanidine interactions using FAERS showed a higher 
ROR when concomitantly mentioned with ciprofloxacin (ROR for hypotension 28.1, 95% 
confidence interval [CI] 19.2–41.2) or fluvoxamine (ROR for hypotension 36.9,95% CI 13.1–
103.4), and also when reported in “any role” with zafirlukast (ROR for falls 16.0, 95% CI 6.1–
42.1). 

− For colchicine and CYP3A4, the strongest ROR signal observed occurred with colchicine + 
atazanavir and rhabdomyolysis/myopathy (ROR = 35.4, 95% CI: 12.8-97.6), and the 
strongest O/E signal was associated with colchicine + clarithromycin and agranulocytosis 
(O/E = 3.79, 95% credibility interval: 3.44-4.03). 

− A descriptive analysis of colchicine and clarithromycin reports to FAERS identified 58 
reported cases, 52% with a fatal outcome, and the most frequent adverse events reported 
were: diarrhea (31%), pancytopenia (22%), bone marrow failure (14%), and vomiting (14%).  

 
CERNER Health Facts® (HF) database 
− 

 

 

 

 

With over 70,000 encounters of patients on tizanidine across 221 hospitals, ciprofloxacin 
was co-administered with tizanidine in 2,487 encounters (3.6%). Compared to patients who 
did not receive ciprofloxacin, co-administration of tizanidine and ciprofloxacin was 
associated with an increased likelihood of hypotension (adjusted odds ratio: 1.43, 95% 
Confidence Intervals:1.25–1.63, p <0.001).  

− A cohort study comparing colchicine plus a macrolide (2,199) and colchicine with an 
antibiotic no macrolide (12,670) found that heart failure was more frequent in the colchicine 
plus a macrolide cohort (n = 402, 18.3%) vs. the colchicine non-macrolide cohort (n = 1153, 
9.1%) (p < 0.0001) and was associated with a higher mortality rate [(85 (3.87%) vs 289 
(2.28%), p < 0.0001 macrolides vs. non-macrolides cohorts, respectively]. When the sample 
was limited to individuals exposed to either clarithromycin or erythromycin and colchicine, 
the adjusted OR for acute hepatic failure was 2.47 (95% CI 1.04–5.91) and 2.06 for death 
(95% CI 1.07–3.97).  

− An analysis of 5,816 patients’ unique encounters were analyzed to investigate the risk of 
hyperkalemia after exposure to a KSD and a RAS agent. The prevalence rates of potassium 
serum levels ≥5.5 was 5.2%, with the KSD cohort showing the highest proportion (6.4%) and 
the KSD-ARB cohort having the lowest (3.7%). However, the difference between groups 
with respect to the proportion of the cohort with hyperkalemia was not statistically significant 
(p=0.12). Compared to APAP group, the KSD, concomitant use of KSD-ACEI, and KSD-
ARB cohorts were associated with significant increases in serum potassium level (0.07, 0.10 
and 0.09 millimoles per liter (mmol/L) respectively), but these differences are likely not 
clinically meaningful. 

− The hydroxychloroquine plus a QTc-prolonging agent/drug cohort had the highest average 
Tisdale Risk Score compared with those without concomitant exposure (p < 0.05). A 
statistically significant increase in QTc interval from the last measurement prior to 
concomitant exposure of 18.0 ms (95% CI 3.5–32.5; p < 0.05) was found in the 
hydroxychloroquine monotherapy cohort. 

− To investigate the relationship of exposure to QTc prolonging medications we examined a 
cohort of 1,698 patients with at least 2 QTc measurements. The risk of death among 
patients with a moderate Tisdale score was 2.61 (95%CI:1.25 – 5.47) or with high-risk 
Tisdale score OR 4.27 (95%CI:1.74 – 10.45) compared to those with a low Tisdale score. 
Patients with three or more QTc prolonging medications had risk of mortality of 1.70 (95% 
CI: 1.03- 2.78) compared to patients receiving only one QTc prolonging medication. 
Antipsychotics [OR = 2.98 (1.32-6.71)] and anesthetics [OR = 2.69 (1.35-5.37)] had the 
highest risk of mortality among the therapeutic classes of QTc prolonging medications. 



− A study was conducted to examine risk of QTc prolongation after exposure to 
hydroxychloroquine and a medication known risk for QTc prolongation. Controls consisted of 
patients receiving other disease modifying rheumatic drugs. This study found that exposure 
to hydroxychloroquine is associated with a moderate increase in QTc interval compared to 
subjects receiving sulfasalazine and methotrexate. Surprisingly, there was no evidence that 
this effect is potentiated when hydroxychloroquine is given concomitantly with other drugs 
known to increase the QTc interval. 

N3C Data 
− A nested case control study of patients from a COVID-19 cohort assessing exposure for the 

drug interaction of direct oral anticoagulants and dexamethasone in patients with a 
thromboembolic event included a total of 172 cases who were matched to 344 controls. The 
analysis did not find a statistically significant increase in the risk of thromboembolic events 
when apixaban/rivaroxaban were administered with dexamethasone (OR (95% CI) = 1.15, 
(0.32, 4.18). While there is a theoretical concern of a pharmacokinetic drug-drug interaction 
between dexamethasone and oral anticoagulants, this case-control study did not observe a 
statistically significant increase in the risk of thromboembolism. 

Systematic Reviews and Meta-Analyses 
− A systematic review examining risk of bleeding after exposure to warfarin and NSAIDs 

identified 11 studies for inclusion. The estimated OR for gastrointestinal bleeding for the DDI 
exposure was 1.98 (95% confidence interval [CI]: 1.55–2.53). There was an increased risk 
of general bleeding with the combination of warfarin with NSAIDs (OR = 1.58, 95% CI: 1.18–
2.12) or COX-2 inhibitors (OR = 1.54, 95% CI: 0.86–2.78) compared with warfarin alone. 

− A systematic review to estimate the serum potassium changes when concomitant exposure 
to ACEI/ARB and spironolactone therapy identified 20 randomized controlled trials. Persons 
exposed to both medications compared to ACEI/ARB therapy alone had an increased serum 
potassium concentration by 0.19 mEq/L (95% CI, 0.12-0.26 mEq/L), with intermediate 
heterogeneity across studies (Q statistic = 46.5, P = 0.004; I2 = 59). This study provides 
evidence of little risk of hyperkalemia with the combination of spironolactone and an 
ACEI/ARB. 

− A systematic review and meta-analysis to examine the risk of bleeding in individuals exposed 
to a combination of oral anticoagulant (OAC) and aspirin, compared to those taking OAC or 
aspirin alone identified 43 studies. An analysis of 15 RCTs found an increase in the risk of 
bleeding with an OR=1.36 (95% CI 1.15, 1.59) when evaluating OAC plus aspirin versus OAC 
alone. This result was similar to findings from 19 observational studies (OR 1.42, 95% CI 1.09, 
1.87). Similarly, when OAC plus aspirin was compared to aspirin alone, a higher rate of 
bleeding was found in the combination groups (OR 2.40 (95%CI 1.90, 3.0) in the analysis of 
15 RCTs and (OR 3.18 (95% CI 1.53-6.65) among ten observational studies. 

− A review of case reports associated with colchicine-related DDIs identified risk factors 
associated with colchicine toxicity. These factors included: colchicine dose; renal disease; 
and hepatic disease. The review also identified potential management strategies for the 
interaction.  

AIM 2 

A total of 8 DDIs were identified as high priority for contextual alerting. Both document-based 
decision trees and computable knowledge artifacts for these algorithms have been made 
available publicly at https://ddi-cds.org. The source code used to implement both the Drools and 
Clinical Quality Language knowledge artifacts is also available. Moreover, a Drools environment 



containing the rules, rule execution environment, and synthetic data were made available via a 
Docker image and the CQL artifacts are available on GitHub (https://github.com/dbmi-pitt/ddi-
cds/). Eight computable DDI algorithms were successfully validated. Almost all clinical entities 
required for the DDI rules were supported in the version 5 of the OHDSI common data model. 
Only 1 algorithm had a decision tree branch that was not possible to implement in the 
computable version. Specifically, the “Epinephrine/Beta-blocker” algorithm referenced the use of 
epinephrine for dermatology, dentistry, or plastic surgery. This could not be implemented in the 
computable rule because the OHDSI common data model does not directly link drug exposures 
with patient condition occurrences.  
 
The real-world EHR dataset evaluation included 24,599 individual patients who had a 
healthcare encounter that overlapped with the study’s 3-month period (January–March 2016). 
There were 31,332 distinct health encounters with 10,506 (33.5%) having a duration of at least 
24 hours. We focused on encounters lasting 24 hours or more. The total number of alerts that 
would have triggered based on basic concomitant exposure was 3020. Use of the 8 algorithms 
would result in filtering 1584 (52.4%) of these alerts based on the operational classification of 
“No Special Precautions.” Examining specific DDIs, the percentage of interruptive alerts that the 
algorithms suggest completely filtering ranged from 100% for citalopram/QT prolonging agent 
(N=849) and fluconazole/opioid (N=282) to <1% for warfarin/antidepressant (N=468). The 
algorithm that resulted in the most contextualized simulated alerts was warfarin/ 
antidepressants. In contrast to 468 basic concomitant exposures with no contextualization, the 
computable rule identified 368 (78.6%) situations classified as “Avoid Combination,” 96 (20.5%) 
situations classified as “Usually Avoid Combination or Minimize Risk,” and 4 (0.9%) situations 
classified as “No Special Precautions.” The immunosuppressant/fluconazole algorithm also 
resulted in well contextualized output with 313 (89.4%) of the 350 basic concomitant exposures 
classified into 2 different situations warranting an “Avoid Combination” classification, and 37 
(10.6%) classified as “No Special Precautions.” The epinephrine/beta-blocker algorithm was the 
only algorithm that transitioned all basic concomitant exposures (N=176) to “Usually Avoid 
Combination or Minimize Risk.”  
 
For our study examining contextual factors that could be used to customize DDI warnings based 
on common drug compendia, the 15 DDIs included 682 unique medications and were grouped 
into 30 subclasses. The unique medications per subclasses was 23 (median = 13). Thirteen 
drug groups (43%) had statistically significant agreement (p <0.05) across the drug interaction 
references. Of these groups, three had perfect agreement (Kappa = 1), two had moderate 
agreement (Kappa = 0.41 - 0.60), four had fair agreement (Kappa= 0.21 - 0.40), and four had 
slight agreement (Kappa = 0.0 - 0.2). The perfect agreement groups consisted of less than two 
drugs (i.e., irinotecan, tizanidine, azathioprine and mercaptopurine). The median Kappa for all 
groups was 0.11 (slight agreement). Of the 23-drug average per group, an average of 3.8 drugs 
per group were the same across references. The majority of variables were order related 
(22/28, 79%). Timing variables were the most common with 10 of 15 DDIs (67%) having one or 
more variables. Furthermore, timing variables were consistent across references (i.e., 3/3 or 2/2) 
in 8 of the 10 DDIs (80%). The majority of timing variables were associated with MAOIs; the 
references provided recommendations to wait at least 14 days after stopping a MAOI before 
starting an interacting medication. Dose variables were available for 9 DDIs (60%). Compared to 
timing, dose of the medications was less consistent across the references. Two of the nine DDIs 
(22%) had dose considerations that were consistent across the references. Most dose 
recommendations were non-specific to increase or decrease doses when initiating a medication 
that changes metabolism. Route factors were mentioned in only one reference for three of 15 
(20%). The three route issues were specific to the transdermal administration of the MAOI 
selegiline. Overall, there were 22 of 45 (49%) possible order variables. Patient variables were 
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available with 4 (27%) DDIs. High-risk QT prolonging agents had patient considerations in all 
three categories; however, only the condition attribute was consistent across all three drug 
interaction references. The condition factor for the atazanavir – proton pump inhibitors DDI 
included treatment experience (i.e., HIV treatment experienced versus naïve with atazanavir), 
age, sex, and heart disease. Observation variables included laboratory (e.g., hypokalemia) 
measures. The medication variable for high-risk QT prolonging agents was related to cytochrome 
P450 3A4 substrates. These substrates increase the blood concentration of certain QT 
prolonging agents and was an additive risk for prolonging QTc intervals. 
 
AIM 3 
 
Website: One of the major outputs of the project was the creation and updating of the website 
DDI-CDS.org. The website is a key component of our dissemination strategy and also a 
repository for work product from the grant. In addition to providing documentation for the various 
algorithms that were developed, the website contains links to the various webinar recordings 
and apps created by the project.  We developed and tested three apps for DDI-CDS (https://ddi-
cds.org/apps/), the first one, for the concomitant use of NSAIDS and warfarin and the potential 
of gastrointestinal bleed. The other two for tizanidine and cytochrome P450 1A2 inhibitors and 
for colchicine and cytochrome P450 3A4/p-glycoprotein inhibitors.  
 
Dissemination 
The presentation of 11 recorded webinars can be viewed via the webpage (https://ddi-
cds.org/resources/). Each DDI webinar discussed the evidence and algorithm. Other webinars 
include other topics such as COVID-19 treatments, analyzing DDI data from the Epic system, 
and tools made available via vendors of drug information. See below for the list of webinars 
(reverse chronological order): 
 

1. 

 
 

 

 
 
 

 
 
 
 

Tamoxifen Drug Interactions: A Critical Evaluation of the Evidence and Guidance for 
Patient Care (date 7/20/22) 

2. Successful Deployment of Contextualized Drug-Drug Interactions CDS (date 2/23/2022) 
3. Analyzing and Evaluating Drug-Drug Interaction Alert Data from Epic Electronic Health 

Records (date 10/27/2021) 
4. Using existing Cerner tools to monitor and improve drug-drug interaction warnings (date 

8/25/2021) 
5. Tizanidine Drug-Drug Interactions (date 2/17/2021) 
6. Drug interactions involving colchicine and CYP3A4 / P-gp inhibitors (date 1/20/2021) 
7. Drug interactions involving ACE inhibitors or ARBs and potassium-sparing diuretics 

(date 9/23/2020) 
8. Drug interactions involving SSRI or SNRI -Thiazide diuretics (date 7/22/2020) 
9. Drug interactions involving drugs used to treat COVID-19 (date 5/13/2020) 
10. Warfarin – NSAIDs (date 3/11/2020) 
11. Warfarin – antidepressants (date 2/12/2020) 

 
Algorithm Implementation: Two institutions, Vanderbilt University Medical Center (VMCU) and 
Northern Lights, implemented one or more of the algorithms that were developed. Both 
organizations focused on interactions with colchicine. At Vanderbilt University Medical Center, 
an EPIC user, the research team met with the CDS governance committee to review the app 
and discuss implementation. The review of the app included representatives from various 
operational groups within the medical center, and covered various topics such as medication 
identification, IT security, disaster recovery, programmers, product licensing, data use and 
integration, data retention, HIPAA/HITECH compliance, data encryption, data sharing, end-user 
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access, authentication, access, audit and access logging, and support. The colchcine-CYP3A4/ 
P-gp inhibitors DDI SMART app is presently in the final stages of deployment within the 
Vanderbilt IT system with work ongoing to test and adapt it within the computerized provider 
order entry (CPOE) workflow.  
 
At Northern Lights, a Cerner user, we worked with the pharmacy informatics team to ensure 
their system was correctly identifying medications that may interact with colchicine. Northern 
Lights is located in the northeastern part of the United States and comprises 9 hospitals and 
250 ambulatory practices). Because of technical limitations of the Cerner system, integration of 
the app was not possible. However, they had previously implemented other DDI warning 
algorithms to limit unnecessary alerts. This included a review of all DDIs and reclassification of 
seriousness if necessary. Twelve pharmacists from six member hospitals reviewed a total of 
103,486 DDIs with moderate, major, and major-contraindicated alert severity. The most 
common decision made for various DDI alerts was to suppress the warning. This included drug 
pairs of fentanyl-ondansetron and meperidine-ondansetron. No changes in severity were made 
for some DDI pairs where clinicians were of the opinion that the alerts were still relevant (e.g., 
diltiazem-metoprolol, warfarin-heparin, etc.). For other DDIs, such as ibuprofen-ketorolac, alert 
severity was downgraded from major-contraindicated to major-generally avoid. Some DDIs such 
as potassium chloride-spironolactone severity were upgraded from major-generally avoid to 
major-contraindicated. The hyperkalemia algorithm was also applied to the potassium chloride-
spironolactone DDI such that the alert only showed when potassium level was high or missing. 
To limit unnecessary warning to clinicians the severity level was set to display major-
contraindicated DDIs to all providers including inpatient, ambulatory providers, and pharmacists, 
whereas major severity would display the warning for pharmacists and ambulatory providers. 
Before making any of these changes to DDI alerts, pharmacist received the largest number of 
alerts, followed by physicians/providers, then nurses. For pharmacists, changes in warnings 
resulted in a spike followed by a drastic reduction following changes to the moderate to major 
alert threshold and alert customization changes. For clinicians, there was a significant reduction 
in warnings from a rate of approximately 17.1 DDI per 100 orders to approximately 1.8 DDIs per 
100 orders, representing an 89% reduction in warnings shown to providers. The number of 
warnings for nursing followed a similar trend but with a lower volume of alerts. Each component 
for contextual filtering of DDI alerts resulted in varying results. For example, Inpatient/outpatient 
filtering was responsible for over 5448 alerts filtering during one week and filtered approximately 
43% of DDIs alerts. Order detail filtering group 1-10 filtered around 0.2% of DDI alerts and 
filtered 19 alerts in 1 week. Discontinue on scratchpad filtering was responsible for 
approximately 77 alerts in 1 week and 0.6% of DDI alerts. The CERNER mCDS rule filter such 
as high/missing potassium filtered 468 alerts in 1 week and 3.7% of DDI alerts. Overall, DDI 
algorithms/filters reduced alerts for all providers. The percentage filtered was highest for 
pharmacists (52%) followed by physicians (42%), physician extender such as mid-level 
practitioners (34%), other (28%), nurses (22%), and medical assistants (8%).    
 
Barriers to Implementation of DDI Algorithms: After recruitment via purposive snowball 
sampling from 14 diverse U.S. health systems including both inpatient and ambulatory services, 
14 interviews were conducted with 17 participants. The coded interview transcripts generated 
15 high-level barrier subthemes in 8 socio-technical themes. The barriers were grouped into 
three clusters (user, organization, and technical stakeholders), which revealed system dynamics 
that could stall the implementation of tailored DDI alerts. The study found it is essential to 
identify and demonstrate value metrics that healthcare organizations prioritize to enable 
implementation of tailored DDI alerts. A multi-faceted approach to promote adoption is needed. 
Important actions to overcome barriers include: partnering with healthcare organizations that 
have the capacity to adopt new DDI alert algorithms, identifying multidisciplinary specialists that 



know users’ needs; and working across organizations and vendors to facilitate implementation 
of customized DDI algorithms.  
 
DICE Evaluation: A total of 54 individuals provided responses to the survey, although not all 
individuals answered every question (complete responses were available from 50 [92.6%] 
respondents). Among the 50 participants who provided information about their discipline, the 
vast majority (94%) were pharmacists. Almost two thirds of respondents (n=29, 67%) had roles 
as informatics pharmacists within their organizations. Most respondents (n=36, 88%) indicated 
their organization was a health system with both inpatient and outpatient clinics. Twenty-four 
respondents (59%) were associated with organizations that had more than 500 licensed beds. 
Overall, respondents rated the information in the general section of DICE as useful, with the 
ability to change severity ratings for DDIs rated 75.7 ± 22.2 and the monograph describing the 
interaction rated 69.3 ± 27.7 (See Table 2). There were several comments regarding the content 
and potential changes once implemented. For example, one participant mentioned, “The DDI 
Alert Management Section could be of great value (scored as 100%) if it would result in a 
difference in alerting behavior, such as actively presenting a window requiring user interaction 
vs passively presenting an alert for a few moments that then auto-collapses vs DDI information 
available upon user initiated profile-level interaction check”, and “For the interaction monograph, 
I think bullet formatting will be more readable” or “Instead of the interaction monograph, I would 
prefer to see a set of instructions”. One respondent thought it would be helpful for decision 
making “I wish the content on the alert management was better because it would be great to be 
able to use a category like that for decision making”.  
 
Discussion 
Evidence of harm from specific drug combinations was evaluated by the research team through 
a series of investigations. In some instances, such as with colchicine-related interactions, the 
risk of harm was much greater than previously reported and that nearly 50% of reported cases 
in the FDA’s FAERS database involving clarithromycin resulted in death. On the other hand, 
some theoretical DDIs, such as dexamethasone and OAC as well as KSD and ACEI/ABR 
combinations did not show significant changes in events or physiological measures, suggesting 
that warnings for these interactions are likely “not necessary” in the majority of instances. 
 

The project was able to create artifacts for DDIs that could be implemented to reduce 
inappropriate warnings. Using both synthetic and actual patient encounter data, we 
demonstrated that it was possible to significantly reduce the number of warnings using rather 
simple alert filtering rules. The study was also successful in creating apps that could be 
implemented in healthcare organizations to improve warnings for certain drug combinations. 
However, implementing such algorithms was challenging due to a variety of issues. In general, 
hospitals and health systems are seeking “off-the-shelf” solutions to medication safety from 
compendia vendors and EHR software systems. Concerns about maintenance, competing 
priorities, governance, and lack of resources limits the ability to implement third-party DDI 
algorithms, such as the ones created by this project. 
 
Conclusions 
 
Inappropriate warnings related to DDI continue to plague healthcare systems despite our efforts 
to advance clinical decision support for these warnings. This project provides solid evidence for 
the risk of harm associated with many interactions that were lacking such evidence. The risk of 
serious harm from colchicine interactions with CYP3A4 and P-gp inhibitors is substantial, with 
nearly 50% of cases involving clarithromycin leading to death. In addition, we also investigated 



drug combinations where there was concern but we found little evidence, suggesting any 
concerns were theoretical and that patients could safely use the medications concurrently. The 
project demonstrated that implementation of a relatively modest number of artifacts could have 
a dramatic decrease in potentially inappropriate warnings. However, implementing artifacts was 
challenging, in part due to the COVID-19 pandemic, but also because of the limited resources 
within healthcare organizations to implement third-party software. Pharmacy informatics 
professionals are seeking off-the-shelf solutions from their drug compendia and EHR vendors to 
provide artifacts to reduce over alerting. 
 
 
Significance 
 
There is keen interest in the healthcare community to increase the specificity of DDI warnings 
and reduce over alerting. Furthermore, some drug combinations the risk of harm can be 
mitigated through appropriate monitoring and highlighting patients with predisposing risk factors. 
Meaningful CDS for DDIs is possible using available data within EHRs, and over time may 
reduce provider alert fatigue. 
 
Implications  
 
Implementing third-party artifacts for DDI in hospitals and health systems is challenging due to a 
variety of factors, including lack of resources, concerns about maintenance, and IT security. 
Local governance of third-party artifacts is a barrier for widespread adoption of DDI alert filtering 
rules. Future studies should consider partnering with drug compendia vendors to increase 
adoption and implementation of medication safety artifacts. In addition, EHR software 
developers should incorporate end-user tools that would permit easy modification and 
maintenance of DDI warnings to limit alert fatigue and target patients at greatest risk of harm. 
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